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1. Introduction

Previously, we developed a method to allow mammographic differential diagnosis based
upon the 3-D orientation and morphology of breast calcifications. This method used a
limited-view, binary reconstruction technique. In clinical trials, it was shown to be of
value in instances where calcifications are associated with a mass. In such cases, we
could distinguish between preferentially peripherally distributed calcifications that are
predominantly benign and homogeneously distributed calcifications that are more likely
to be malignant. We have also been able to elucidate the linear distribution of
calcifications contained within a ductal system. Unfortunately, this reconstruction method
does not allow one to image non-calcified tissues, or relate calcifications to the
surrounding tissue. Thus, in the present study we have developed and propose to
compare alternative methods of generating 3-D images of the breast, namely stereoscopy,
linear tomosynthesis, limited view image reconstruction using algebraic reconstruction
techniques, and micro-CT. Such methods are in theory capable of producing 3-D images
of both calcifications and the surrounding breast tissue.

It is our purpose to develop a method that will be clinically viable in terms of dose, image
quality and equipment cost. We believe that these proposed developments will further
enhance the 3-D imaging and evaluation of breast cancer by allowing the radiologist to
view calcifications in relation to the surrounding tissue, and to allow 3-D imaging of non-
calcified breast tissues at doses which are clinically acceptable. Stereoscopy has the value
of providing depth perception of tissues with little additional dose, however, often the
small angle separating the views is insufficient to completely determine the causes of
superposition. Tomosynthesis requires more views and potentially higher dose, but
provides better separation of tissues. Artifacts from the reconstruction algorithms can
blur synthetic tomograms. CT, while providing the best 3-D images requires doses that
are not clinically acceptable. S

To date, we have developed an imaging system capable of acquiring each of the images
required for the different techniques. We are in the process of quantifying the
performance of that system, and preparing to acquire specimen images. This work is
reviewed in this annual report.




2. Body

2.1. Summary of Work Items
It is useful to restate the work items listed in the original grant. They are as follows:

Task 1:Develop 3-D imaging techniques (Months 1-24)
Subtask la: Stereoscopy (Months 1-4)
Subtask 1b: Linear Tomosynthesis (Months 5-8)
Subtask l¢: Limited View Reconstruction (Months 9-20)
Subtask 1d: Computed Tomography (Months 18-24)
Task 2:Phantom Development (Months 1-24) ~
Task 3:Evaluate 3-D imaging methods with phantoms (Months 1-36)_
Task 4:Acquire biopsy specimen image datasets (Months 13-36)
Task 5:0bserver study using specimen images (Months 25-36) -

At the current time, tasks 1-3 are ongoing, while tasks 4 and S have not yet begun. In the
following report, a discussion of the accomplishments for the period of September 15, 1998 until
March 2001 will be provided. Due to extensions and delays incurred during the performance of
this grant, a detailed summary of the timeline of events affecting this grant will also be offered.

2.2. Development and Evaluation of 3-D Imaging Techniques

There has been considerable interest in imaging the breast in 3-D. This has included numerous
radiographic methods including stereoscopy'?, tomosynthesis®, limited-view reconstruction of
calcifications*®, limited-view tomography reconstruction, and computed tomography’. There
has also been interest in 3-D ultrasound, 3-D MRI, and other potential methods of imaging the
breast in 3-D. However, to date, there has been a sizeable gap between the proposed techniques
and clinical feasibility. To achieve clinical feasibility, it is necessary to consider these
techniques on the basis of dose, fundamental imaging physics, and technology. This grant was
designed to consider 4 such methods and compare them, both on the basis of physical
performance and clinical images.

To date, we have had a number of difficulties completing this grant. These difficulties are
described in detail in section 2.4. However, significant changes in clinical staff, clinical
demands on the time of the participants of this grant, and the sale of a key piece of equipment by
Thomas Jefferson University Hospital have all served to retard progress on this grant. In spite of
these difficulties, we have been able to develop alternative solutions, and have steadily made
progress on the originally proposed work items. The following report details the progress to date,
discusses the difficulties experienced, and discusses solutions to these problems.

Image Acquisition Hardware

The grant originally proposed to use two pieces of hardware for the completion of this grant.
The first was a prototype device built in Dr. Maidment’s laboratory. It consisted of an Eikonix
1412 linear digital camera, coupled to an x-ray image intensifier (XRII) via lenses. These were
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Figure 1 A schematic of the imaging system. The system consists of an x-ray tube, a system of
translation and rotation stages for positioning the specimen, an x-ray image intensifier (XRII), lenses
and a CCD camera. Pre- and post-object collimation is not shown.

lenses. These were mounted on an optical bench with a Siemens Bi150/30/50R x-ray
tube, collimators, and a specimen holder mounted on a rotary motion stage. A Siemens
Heliophos 5S generator supplied the x-ray tube. All of the components were connected
to a 486-computer running Linux. A schematic of the imaging system is shown in
figure 1. This system was intended for preliminary investigations. It had known image
quality problems that would prevent it’s use through the entire study. Fortunately, a
second system existed at that time which had significantly better image quality.

The second system consisted of a Fischer Mammotest stereotactic core biopsy system and
a Fischer MammoVision digital x-ray detector (Fischer Imaging, Denver, CO). We have
had a long-standing relationship with the Fischer R&D group, and Fischer had for many
years provided technical support for this work. The Fischer system was supposed to be
modified to include a computer-controlled rotator stage. This would allow us to mount a
specimen holder on this stage and use the Fischer system to produce tomographic images.
This system was being developed, in part, because of its physical location in the Breast
Imaging Center, which is in the same building as our outpatient breast surgery center.

We had planned to interview women prior to needle localization, including obtaining
informed consent. Then, following their surgery, the surgical specimen would be rapidly
imaged on the modified Fischer table. Unfortunately, the hospital sold this unit, August
10™, 1999, just 8 weeks after I had finally found a post-doctoral researcher to fill the
position necessary to fulfill the requirements of this grant.

Since that time, we have made a concerted effort to allow this grant to proceed. We have
done this in two ways. First, we have altered the original imaging system by replacing
the image intensifier and Eikonix camera with two other detectors. We have begun to
characterize their performance, and are currently awaiting parts to assemble the final unit
and begin more detailed experiments for system characterization, optimization, and tissue
imaging. The first of these replacement detectors uses a DRC (DRC is a subsidiary of
Hologic, Wilmington, DE) amorphous selenium active matrix detector. The second uses




an SMD (SMD, Fort Collins, CO) IM30 CCD camera coupled via lenses to a phosphor
screen. In the following sections, the performance of the original Eikonix detector is
compared with the DRC and the SMD detectors. Then, a summary of the research in the
four imaging modalities is presented

Detector Characterization

In each of the designs discussed below, a Siemens Heliophos 5S x-ray generator and a
Siemens Bi150/30/50R x-ray tube, a Parker computer controlled rotary stage, and a
custom specimen/phantom holder are used. These form the basis of the imaging system
being built. They are all mounted on a optical breadboard that is equipped with
appropriate rails and mounting hardware. A rotate only geometry is used to acquire
images. The setup allows acquisition of either tomographic or stereoscopic images,
depending upon the acquisition protocol used, by varying the angle of acquisition and the
dose per image. Each detector is capable of acquiring 2-D images, and hence 3-D
volume reconstruction is also possible.

Eikonix Detector

The first detector built consisted of an Eikonix 1412 digital linear camera and a Siemens
9”/6” x-ray image intensifier (XRII). Because this was a linear camera, true CT images
were acquired differently than the other methods. In the limited view methods (including
stereoscopy), 2-D images were acquired by scanning the detector at selected angles.
However, due to time constraints, CT images were made in two different ways. Angular
sub-sampling allowed us to acquire up to 200 images for 3-D reconstruction.
Alternatively, 1-D images could be acquired at a greater number of angles but only a
single 2-D slice of the object would be reconstructed.

This camera was used to develop the image reconstruction algorithms used for the CT
images (discussed in detail below). Inthe original grant application, the CT images that
were shown, were of very high contrast objects, and were acquired as 1-D samples to
produce a single 2-D slice. A conventional filtered back-projection reconstruction
algorithm was used. Since that time, we have altered our image acquisition code to allow
2-D images to be acquired, and now use a modified Feldkemp algorithm to generate a
stack of 2-D slices, which are rendered as 3-D volume data sets.

The Eikonix camera has proven to be difficult to work with. A significant problem
occurred that related to the IEEE-488 protocol that was used to communicate between the
camera and the computer. These problems took approximately 2 months to address.
When complete, the image quality was improved, but as we built more challenging
phantoms, we found another problem. This related to the use of an XRII in the detector
system. We have extensively studied this problem. The problem stems from subtle
motion of the image, and regional varying intensity fluctuations in the XRII. The result
is circular and cross artifacts illustrated in the reconstructed images shown in figure 2.

When we first noticed this problem, we spoke to both XRII manufacturers and others in
the microtomography field. The manufacturers disavowed knowledge of the problem,
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Figure 2 Reconstructed images produced with the Eikonix detector. The left image is a wire phantom
designed to test rotational artifacts. Notc that the wire is reconstructed with different levels of success
(they should look like dots, not crosses). Also note the circular artifacts due to the instability of the XRIIL
The image on the right is of a fresh chicken thighbone (8.8 mm x 7.4 mm), clearly showing a ring of
cortical bone, and details within the medullary cavity. This image still demonstrates subtle circular
artifacts that limit the detection of low contrast structures in the bone.

however every other researcher in the field of microtomography who uses an XRII in
his/her imaging system, notices similar problems. In our discussions, it became evident
that most people solve this problem by using such systems only to image high contrast
objects. Since, we had planned from the beginning to image low contrast objects, we
needed to seek a different solution. Thus, we decided to change detector designs. We
came to this decision in August, 2000.

DRC Detector

At the time of our decision to abandon the Eikonix camera, we considered two possible
designs. The first was based upon a DRC active matrix detector that we had in our
laboratory. This system has very high modulation transfer function (MTF) (see figure 3),
and excellent noise power spectra (NPS) and detective quantum efficiency (DQE). These
data were measured in our laboratory. In support of this work, we did extensive
modeling and experimentation. This work was reported in Medical Physics in October
2000, a reprint of which is included with this report®. The system has been used to
acquire tomographic images. Examples are shown in figures 8 and 9 during the
discussion of computed tomography

The great strength of this detector is the image quality. We intend to continue to use it
for at least some of the experiments to test individual 3-D acquisition methods. However,
this detector is very slow, producing one image every 40 to 50 seconds. Thus, even using
angular-undersampling, tomographic images produced from 200 individual views take
more than 2 hours to acquire. Thus, we had to look for a different detector to perform our
CT research. -
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Figure 3 MTF of the DRC detector, compared with the ideal MTF of a
sinc function. Note that a small amount of edge enhancement occurs due
to the use of an amorphous sclenium photoconductor

SMD Detector

The second new detector design was based upon a CCD camera that was coupled with
lenses to a phosphor screen. This design allows us to use a very fast camera. The camera
we chose is capable of imaging at 30 frames a second. This allows tomographic images
to be acquired in as little as 7 seconds for 200 projections to 34 seconds for 1000
projections. However, now we face limitations of the x-ray generator, which will extend
that time to a few minutes. The problem with this design is that it is only ever going to
be useful as a laboratory system. The use of lenses to couple light from a phosphor
screen to a CCD camera is quite inefficient. Our calculations have shown that as little as
2 light quanta per x-ray interaction may be recorded. We have shown previously’ ' that
this inefficiency can result in needing higher doses for the patients (or test objects). This
is not considered a great problem for the experiments currently planned, as we only
intend to image tissue samples and inanimate test objects. It is our expectation that a
clinical system would use one of the newer active matrix arrays that are capable of 10 to
30 frames per second, and which would be dose efficient.

We obtained a demonstration detector from the manufacturer during the period of
December 2000 to February 2001. During that time, we wrote the necessary software to
control the camera with the existing x-ray system. We performed preliminary testing of
the camera, and were satisfied with the performance. An example of a resolution pattern
is shown in figure 4. One tomographic image was also obtained. At the time of this
report, the final equipment for this system has been ordered., however, it will not be
available until early May 2001. In the interim, we continue to use the DRC detector to
perform the Raleigh discrimination task described under the stereoscopy section.
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Figure 4 A portion of a resolution phantom,
showing a limiting resolution of 11.3 1Ip/mm,
acquired with the SMD detector, a Lanex
phosphor screen, and 85 mm:55mm relay lenses
giving an overall field of view of 20 mm. A
subsection of the image is enhanced for
printing.

Image Technique Optimization

Stereoscopy

Stereoscopy is the process by which two views of a scene, obtained at slightly different
angles (such as that due to the displacement of our two eyes) provides the viewer with the
perception of depth (i.e., the ability to discern that one object is behind another). This
process can be applied to radiographic imaging to achieve a similar perception of depth.
Originally, we proposed to perform a Raleigh discrimination test to determine optimal
angular separation for radiographic imaging. Although we have performed a extensive
literature search to help design the experiment, the equipment problems described above
have delayed the experiment. The experiment is currently ongoing using the DRC
detector. It is hoped that it will be complete prior to the arrival of the new SMD camera
in May 2001.

Linear Tomosynthesis

We have also performed preliminary experiments with regard to linear tomosynthesis,
using the Fischer Mammovision stereotactic breast imaging system, prior to its sale. For
each tomosynthetic data set, fifteen images were acquired as the x-ray tube was moved
through a 30 degrees arc. The advantage of synthetic tomography over conventional
tomography is that the set of 15 images can be used to reconstruct an arbitrary number of
planes, while in conventional tomography each image plane requires an additional x-ray
exposure

.The principles of tomosynthesis are illustrated in figure 5. As the x-ray focus is moved,
the imaging plane P is held fixed. To perform a reconstruction, each x-ray image is
viewed as a gray-scale function g; defined on a region Py of the imaging plane P, where i
enumerates the x-ray exposure. For each plane Q parallel to P in which reconstruction
will be performed, each projection position of the x-ray focus defines a one-to-one
correspondence of points in the plane Q with the points in the plane P. Explicitly, for the
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i-th position of the x-ray tube, for each point g in Q, there is a line passing though the
focus and g which meets P in a unique point p. Thus for every i there is a "projective"
transformation between the points of P and Q. Further, the gray-scale function g; on Py

can now be considered as a function g’; defined in the region Qj; in the plane Q, and the
value of the reconstructed gray scale image at a point g is the sum of all the g’; which are

defined at that point. As with conventional tomography, for objects lying within the
plane Q, the functions g’; add coherently to produce a focused image, while for objects

outside the plane are blurred.

An example of images of a preliminary tomosynthesis phantom is shown in figures 6 and
7. The phantom consists of Lucite spheres and cubes contained in a water-filled Lucite
box. This box is superimposed upon a contrast-detail phantom. In figure 6, three
projection images of this phantom are shown. These images demonstrate the overlaying
"clutter" of the spheres and cubes that effectively obscure most of the features of the
contrast-detail phantom. Even at 10 times the dose this image was acquired at, we could
not visualize more than 5 objects of the contrast-detail phantom. In figure 7, we show
three reconstructions of the phantom at different heights above the detector. Two
sections contain only the acrylic spheres. At a height of 10 mm, however, the contrast-
detail phantom can be seen. In this image, 24 contrast-detail elements are visible. The
increase in detection is due to the reduction in the overlaying clutter. Thus, reduction of
this structural noise results in an increase in the effective SNR of the contrast-detail
elements, without requiring an increase in dose.

Figure 5 An x-ray tube is shown at three locations (1,2,3); the imaging plane, P, is
held fixed. An image of the letter “A”, located in a plane Q is projected to three
different locations on the detector. Note that the individual regions Qi overlap.
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With regard to our process, the tomosynthesis image display software is complete. Image
reconstruction software has been written, but further refinements are necessary, including
removal of edge artifacts in the reconstructed images. Image acquisition optimization
and image processing optimization also must still be completed.

i

Figure 6 Three source images of a tomosynthesis phantom. The lead BB’s on the top edge act as fiducial markers for
determining the angle of the image. The phantom consists of luctite cubes and spheres in a water bath. Attached is a
contrast detail phantom. The low contrast elements of the contrast detail phantom are not readily seen.

Figure 7 The tomosynthetic images of the phantom shown in figure XX. The phantom is shown at three diffierent
depths, including one the incorporates the contrast-detail elements (leftmost). Numerous elements are now visible

Limited-View Reconstruction

We have performed an extensive literature search and have learnt the science of
tomographic reconstruction, however little experimental work has occurred with regard
to this work item to date

Computed Tomography

A computed microtomography system has been built to image breast specimens. The
system is currently under evaluation. As discussed above, the system has been built so
that it can accommodate two different types of detectors, a DRC active matrix detector,
and one based on a phosphor screen optically-coupled to a CCD camera. The DRC
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detector is complete, while the CCD based detector will be complete in May 2001 (a
prototype built with loaned equipment was tested between December 2000 and February

2001).

We have yet to finalize the data acquisition parameters. We are evaluating both
conventional and fully 3-D CT image acquisition methods. Experimentally, we have
acquired images using between 200 and 1000 projections, rotating over an angle of 360°.
Given the acquisition geometry used, there is a minimum number of projections that are
required to avoid undersampling the projection space. This number depends upon many
factors including the object size and detector pitch. However, undersampling generally
only causes artifacts in very highly attenuating objects such as bone. Thus, given the low
attenuation of breast tissues, undersampling is likely to be less of a problem. This is one
of the justifications of considering limited view reconstruction techniques later in the
grant.

For performing simple axial reconstructions, the projection data are reconstructed using a
filtered back-projection algorithm (RECLBL, Donner Laboratory). A Hanning filter is
used in the reconstruction. Prior to reconstruction, the projection data are corrected for
pixel-to-pixel variations in the detector response, fluctuations in x-ray exposure between
projections, and error in the center of rotation.

Numerous phantoms have been constructed and imaged. Two are shown in figure 8.
Shown are a tomographic resolution test object and a uniformity test object. The
resolution test object has 5 rows of holes, varying in size from 1/16” to 1/64”. All are
clearly visible. The uniformity test object (right) consists of a Lucite cylinder 17 in
diameter. The image demonstrates a very uniform background without cupping or other

Figure 8 Two reconstructed axial images, acquired with a CT scanner based on the DRC detector. The
image on the left shows a resolution phantom, with elements of size 1/16” to 1/64” all visible. On the
right is a uniform lucite phantom, clearly showing the image uniformity and low noise that is achievable.
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artifacts. These images show the excellent potential of using the DRC detector to
produce tomographic images.

Shown in figure 9 are some preliminary 3-D images of biological tissue. The 3-D images
are rendered in two different ways,. surface rendering and volume rendering. Both show
exquisite detail. We believe that these are the first CT images of periplaneta Americana.
We chose to image this species due to it ready availability and due to the size of the
anatomic structures. Simply stated, this represents a hard imaging task. Attention
should be paid to the quality of the reconstruction of the leg muscles. Note that the
muscle fibers inside the insect’s exoskeleton are clearly visible and discernable.
Similarly, part of the exoskeleton is seen. The muscles are less than 1 mm in diameter
and less than 200 microns separate them at their closest point.

Figure 9 Surface rendered (left), and volume rendered (right) microtomography images of species periplaneta
Americana (common American cockroach), acquired with the DRC detector. The insect is approximately 25
mm long. The muscle fibers and the exoskeleton of the legs are clearly visible.
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2.3. Discussion and Summary of Scientific Results

An experimental framework for performing 3-D imaging of the breast has been
developed. This framework consists of an x-ray generator, x-ray tube, collimators, and
rotary stage for holding specimens or phantoms. Each of the components is under
computer control. The framework is designed to use standard optical mounting hardware
and an optical breadboard to allow testing of many different detectors and acquisition
protocols. '

We have developed and begun to characterize two detectors that will replace the
detectors originally proposed for use in the grant. The first detector is an active matrix
amorphous-selenium device, and second uses a phosphor screen optically coupled to a
CCD camera. The first device has excellent dose efficiency (DQE) and resolution, but is
too slow to allow easy tomographic imaging. The latter device again has excellent
resolution, but lacks the dose efficiency of the flat panel detector.” This detector does,
however, have the temporal response needed to perform CT.

Initial investigations of the four reconstruction methods have been delayed due to the sale
of the original detector system by Thomas Jefferson University Hospital. However, the
new detectors will both be working soon, and work on the reconstruction methods can
then proceed. :

Due to the sale of the Fischer Mammotest system, it will be necessary to alter the original
work plan. The new detectors are not physically near the breast imaging and breast
surgery centers. As such, we will not be able to image specimens as then come from
surgery. Instead, we will image mastectomy and cadaveric breast tissue.
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2.4. Discussion of Administrative Issues

At this time, Dr. Maidment and researchers in his lab are effectively working towards
completing the originally proposed work items. It is useful, however, to discuss the
timeline and events that have shaped the life of this research project. When first
proposed, the work was to be performed by Andrew Maidment (PI), Michael Albert
(research assistant), and Emily Conant (clinical collaborator). Two additional
radiologists, and a pathologist were included to provide additional clinical assistance
when necessary. Prior to beginning the grant Dr. Conant left Thomas Jefferson
University. This was a major loss as Dr. Conant, among all of the radiologists at Thomas
Jefferson University Hospital, was most familiar with the project and had previously
contributed most to the project. We have never since had a radiologist with her clarity of
insight into this clinical problem.

Next, since the departure of Dr. Conant, we have had a number of additional people leave
the TJUH breast center, including Dr. Stephen Feig, Dr. Dionne Farria, Dr. Jane Hughes,
Dr. Stephen Lee, Dr. Steven Nussbaum, Dr. Barbara Cavanough, and others. This has
had a negative impact on all of the research being performed at the breast center. As
previously communicated to you, Dr. Catherine Piccoli assumed Dr. Conant’s duties after
Dr. Conant’s departure, and Dr. Farria was added to the grant. After Dr. Farria left
Jefferson, her position on the grant was not filled by another person.

Further, due to clinical duties, Drs. Maidment and Albert were expending essentially
100% of their time in support of clinical medical physics and PACS at Jefferson. The
department acknowledged these issues, and in November 1998 hired a person to assist
Dr. Maidment. No salary was drawn on the grant until November 1998. In spite of this
assistance, Dr. Maidment still spends at least 40% of his time clinically. In addition, Dr.
Albert had sufficient time commitments that it was necessary to hire a post-doc to assist
with this grant. Finding an appropriate post-doc took more than a year. However in June
1999, Dr. Predrag Bakic began working on this project.

Most importantly, however, Thomas Jefferson University Hospital sold a key piece of
research equipment on August 10" 1999 against Dr. Maidment’s wishes. This device,
the Fischer Mammotest/MammoVision digital x-ray imaging system was supposed to
have been used in virtually all of the experiments planned for this grant. The Radiology
department has offered to help by providing some resources that would offset the
capabilities lost with the sale of the Fischer system. However, as of this date (19 months
later), no additional resources have been provided.

As a result, Dr. Maidment has sought other methods of producing tomographic images.
He has acquired a DRC active matrix detector and a related computer from the
manufacturer, and he has also used part of the capital equipment budget of the grant to
purchase an SMD 1M30 30-fps 12-bit digital CCD camera, and Pentium-class computer
with fast image acquisition and storage capabilities. During a trial period for this camera
(December 2000 — February 2001), the SMD camera was extensively tested and software
to operate the camera was written.
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Thus, at this time, Dr. Maidment has effectively equipped his lab with the equipment
necessary to complete the work in this grant. Dr. Maidment is currently negotiating with
the radiology department for a commitment to cover the salaries of participants in this
grant during a 1 year extension to this grant, which we will submit to the DOD shortly.

One of the consequences of the sale of the Fischer system is that it will no longer be
possible to acquire images of tissue specimens of women undergoing surgical breast
biopsies. Pending approval of the program office of the DOD, it is our intention to use
tissue from mastectomy specimens (after pathological examination), or to use cadaveric
breast tissue. We have not yet sought permission from either the IRB or the other
departments involved (surgery, pathology, and anatomy). These negotiations will begin
in the near future, pending DOD approval.

In spite of these setbacks, Dr. Maidment still wishes to complete this research. The
scientific questions that were proposed in the grant proposal are still relevant. No other
research group has tackled these questions. The following work remains: optimization
of image acquisition techniques, selection of appropriate tissue samples, imaging and
evaluation of soft-tissue images.
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3. Key Research Accomplishments
The following is a list of key research accomplishments resulting from this work:

o Developed a gencric testbed for 3-D imaging research, consisting of x-ray generator,
rotary stage, specimen/phantom holder, and detector assembly.

o Developed three different detectors
o the original was based on an Eikonix linear CCD coupled to an XRII
o the second was based on a DRC active matrix detector
o the third was based on an SMD 30 fps CCD camera

o Developed stereotactic, tomosynthetic, and volume rendering display software

o Developed theoretical framework for measuring and calculating the physical performance
of aliasing and non-aliasing digital x-ray detcctors. o

e Begun optimization of stercoscopy

e Begun characterization and optimization of microtomography
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4. Reportable Outcomes
a) Published Manuscripts

Michael Albert, and Andrew D.A. Maidment. Linear Response Theory for |
Detectors Consisting of Discrete Arrays. Medical Physics, 27(10), 2417-2434,
October 2000.

b) Abstracts and Presentations

A.D.A. Maidment, 3-D Imaging of the Breast. 6™ International Cambridge
Conference on Breast Cancer Screening. Cambridge, England. April 14, 1999.
(Invited Presentation)

AD.A Maidment. "3-D Imaging of the female breast". Imaging 2000,
Stockholm, Sweden, June 29, 2000. (Invited Presentation)

AD.A. Maidment, P. Bakic and M. Albert. "3-D Digital Mammography: A
Comparison of Image Reconstruction Methods". DOD Era of Hope, Altanta, GA,
June 8-11, 2000.

¢) Funding Applications

None
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5. Conclusions

Initial investigations of the four proposed reconstruction methods have been delayed due
to the sale of the original detector system by Thomas Jefferson University Hospital. To
overcome this deficit, an experimental framework for performing 3-D imaging of the
breast has been developed. This framework consists of an x-ray generator, x-ray tube,
collimators, and rotary stage for holding specimens or phantoms. Each of the
components is under computer control. The framework is designed to use standard
optical mounting hardware and an optical breadboard to allow testing of many different
detectors and acquisition protocols.

We have developed and begun to characterize two detectors that will replace the
detectors originally proposed for use in the grant. The first detector is an active matrix
amorphous-selenium device, and second uses a phosphor screen optically coupled to a
CCD camera. The first device has excellent dose efficiency (DQE) and resolution, but is
too slow to allow easy tomographic imaging. The latter device again has excellent
resolution, but lacks the dose efficiency of the flat panel detector. This detector does,
however, have the temporal response needed to perform CT.

Due to the sale of the Fischer Mammotest system, it will be necessary to alter the original
work plan. The new detectors are not physically near the breast imaging and breast
surgery centers. As such, we will not be able to image surgical specimens. Instead, we
will image mastectomy and cadaveric breast tissue.

The delays introduced by the sale of the equipment, and personnel issues have
sufficiently delayed the completion of this grant that a no-cost 1 year extension will be
needed. An application for this extension will be submitted shortly.
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7. Appendices
A copy of the following published manuscript is included.

Michael Albert, and Andrew D.A. Maidment. Linear Response Theory for
Detectors Consisting of Discrete Arrays. Medical Physics, 27(10), 2417-2434,
October 2000.
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Linear response theory for detectors consisting of discrete arrays
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The optical transfer function (OTF) and the noise power or Wiener spectrum are defined for
detectors consisting of a lattice of discrete elements with the assumptions of linear response,
Gaussian statistics, and stationarity under the discrete group of translations which leave the lattice
fixed. For the idealized classification task of determining the presence or absence of a signal under
signal known exactly/background known exactly (SKE/BKE) conditions, the Wiener spectrum, the
OTF, along with an analog of the gray-scale transfer characteristic, determine the signal-to-noise
ratio (SNR), which quantifies the ability of an ideal observer to perform this task. While this result
is similar to the established result for continuous detectors, such as screen-film systems, the theory
of discrete lattices of detectors must take into account the fact that the lattice only supports a
bounded but (in the limit of a detector of arbitrarily great extent) continuous range of frequencies.
Incident signals with higher spatial frequencies appear in the data at lower aliased frequencies, and
there are pairs of signals which are not distinguishable by the detector (the SNR vanishes for the
task of distinguishing such signals). Further, the SNR will in general change if the signal is spatially
displaced by a fraction of the lattice spacing, although this change will be small for objects larger
than a single pixel. Some of the trade-offs involved in detectors of this sort, particularly in dealing
with signal frequencies above those supported by the lattice, are studied in a simple model.

© 2000 American Association of Physicists in Medicine. [S0094-2405(00)00908-1]
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I. INTRODUCTION

The importance of signal detection theory in quantifying the
performance of medical imaging systems (x-ray screen-film
imaging being perhaps the best example) gives impetus to
applying the same techniques to the digital radiographic im-
aging systems which are now coming into clinical use. As
applied to screen-film systems, signal detection theory re-
quires three assumptions to be at least approximately ful-
filled: that the detector responds linearly to the incoming
signal, and is both stationary and homogeneous (i.e., both the
detector response and the additive noise are translationally
invariant). One can then summarize the response of the sys-
tem in terms of the gray-scale transfer characteristic, the op-
tical transfer function (OTF), and the noise power or Wiener
spectrum.

The digital x-ray imaging systems which are now appear-
ing generally behave as a lattice of discrete detector ele-
ments. Although digital, these detectors are generally oper-
ated under conditions such that the effects of quantization are
negligible. When compared to screen-film systems, these de-
tectors tend to be linear over a wider range of exposures.
Like screen-film, for low-contrast signals the noise is ap-
proximately additive and Gaussian. However, as the size of
the imaging elements is now comparable to the size of some
of the smaller objects which are of clinical interest (around
0.1 mm), these detectors are not strictly homogeneous in that
translations by a fraction of the lattice spacing result in the
signal being recorded in a different manner. As these devices
generally consist of a regular lattice of sensitive elements,
they still possess a symmetry with respect to a discrete group

2417 Med. Phys. 27 (10), October 2000
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of translations. This symmetry is approximate due to the fi-
nite extent of physical detectors. However, as in the theory
of screen-film systems, corrections for the limited extent of
the detector are negligible for many practical applications.
Thus, one can apply Fourier techniques to put the signal
detection theory of such devices in a form which is both
tractable and similar to the theory of screen-film systems.
Instead of using a continuous Fourier transform, one uses a
discrete space Fourier transform, which recodes the data ac-
quired by the detector at a discrete lattice of positions in
terms of a bounded and continuous range of spatial frequen-
cies.

For screen-film systems, the OTF diagonalizes the linear
operator which relates the input signal to the output. As de-
tailed below, for discrete-array detectors the effects of alias-
ing introduce a null space, different for each device, which
prevents this operator from being diagonalized using a basis
common to all devices, but the OTF represents the operator
in a basis in which it is sparse in the sense that all terms
vanish except those between input and output spatial fre-
quencies which are equal or aliased. The Wiener spectrum is
the discrete space Fourier transform of the discrete autoco-
variance function, and thus is also defined in the region of
frequency space which the lattice supports. As in the case of
continuous detectors, for low-contrast objects (so that re-
sponses are approximately linear), these quantities determine
the signal-to-noise ratio (SNR) which is an appropriate
figure-of-merit for the classification task of discriminating
between the presence or absence of an exactly known signal
against an exactly known background (SKE/BKE).

© 2000 Am. Assoc. Phys. Med. 2417
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FiG. 1. (a) a rectangular lattice. (b) The reciprocal lattice of (@. (© A
hexagonal lattice. (d) the reciprocal lattice of (c). Note that (a), (b), (c), and
(d) represent a finite region of a lattice which covers the entire plane. (e) A
33 finite rectangular lattice. (f) The circles represent the frequencies used
in the finite Fourier transform of (e). For comparison, a unit cell of the full
reciprocal lattice is shown. See Sec. III for details.

unit cell (parallelogram or hexagon) and Fig. 1(d) shows
the reciprocal lattice (note that v; is perpendicular to wy
and v, is perpendicular to w,). The area |A|=|v, Xv,| of a
unit cell is independent of the choice of unit cell, since
it is fixed by the average density of lattice points over large
regions. The area of the unit cell of the reciprocal lattice,
|K|=|w;Xw,|, is inversely proportional to |A], as can be

seen by

(vl)x (Vl)y) ((wl)x (WZ)X)

=|d d 9

|A“K| et( (VZ)x (v2)y . (wl)y (w2)y (l )

(VI'WI VI'W2>

=|det
VW V2rWa

B (1 0) B

=|det 0 1 =1, (20)

making use of the fact that the determinant of a product
of matrices is equal to the product of the determinants and
Eq. (18).

For any function g(m;,m,) of the lattice, the discrete
space Fourier transform is defined'>*? as

§O=1A] > glmy,my)e ™ my T 1)

my.mo
for all spatial frequencies f. This definition is equivalent to
evaluating the z-transform on the unit circle in the complex
plane.'z'15 It is also equivalent to the Fourier transform of
the function obtained from the data set by interpolation with
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sinc functions (e.g., Ref. 16, p. 230). Direct calculation from
Eq. (21) gives

(B =g(f+m wy+myw,), (22)
which shows that § is periodic in Fourier space for displace-
ments in the dual lattice and one need only consider values
of ¢ on one unit cell of this lattice. Any frequency f outside
of this unit cell is an alias of a frequency f’ inside the cell,
with f—f in the reciprocal lattice. Viewed another way, the
reciprocal lattice divides points in the frequency plane into
equivalence classes of points, two points being equivalent if
and only if they are separated by a vector in the reciprocal
lattice. Any unit cell will contain exactly one point from each
equivalence class (except for boundaries), and knowledge of
£ on the unit cell determines ¢ on the entire plane. Alterna-
tively, one can consider g as being defined on the topological
“‘quotient space,’” a torus, just as one can consider a function
on the real line with period 27 as defined on the unit circle
(Ref. 17, p. 155).

The exponential functions in the discrete Fourier transfor-
mation satisfy a simple orthogonality condition
f f d*e 2T O oo Ty = K|S, 0 Oy iy (23)

K 171 2272
where K is the region corresponding to the unit cell of the
reciprocal lattice in the frequency plane and |K]| is the area of
this region, thus giving

g(ml’m2)=ff d*f g(Be*™ mym,
K

as the inverse transform. The complex exponentials form a
complete set of orthogonal functions, so that any appropriate
periodic function of frequency f can be represented in terms
of them. The completeness can also be expressed in terms of
a comb function as

E eZWi(f—f')'rml."lz:IKl 2 5(f_f,—fkl ’kZ)’
ky ko

my .y

(24)

(25)

where the equality is interpreted in terms of distributions and
the sum on the right-hand side is over the frequencies in the
reciprocal lattice.>!¢7

For actual finite data sets, one applies the finite Fourier
transformation. The discrete space Fourier transformation
can be interpreted as a limit of the finite Fourier transforma-
tion as the number of equally spaced points in the data set is
increased. Specifically, consider a bounded subset of the
{rs, oyt such as .% of the form

F={ry, ,n2|N1sm<N{ JN><n,<N}}, (26)

for which the finite Fourier transform and its inverse are
given by

>

’
nyn, S

@7

g(ly,h)= g(ny ny)e 2™ty aym,

1 J 2 mrif]
2 N gl e Ty Ty g (28)

g(ﬂl,ﬂg)___ ANIANZ f’l-’:E%

where AN;=N]—N;. The points in the Fourier space are
given by

B
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by b (29

1y dy Alel AN2w2 )
and

=8, L |Li<L<L{,Ly<I,<L;}, (30)

where the L’s are chosen so that L/ —L;=N/—N;. The re-
ciprocal relationship [Eq. (18)] between the basis vectors
{v:} and the dual basis vectors {w;} gives

L P
fll ,lz'rrzl,n2= A—MWI+ Z—N_zwz -(n1v1+n2v2)

) I l 3]

AN, + AN,’ G1)
which, along with choosing N/=—N;=N,/2 and L;=—L]
=N,/2 for N, even, produces a more conventional represen-
tation of the finite Fourier transform.

As the number of data points AN,AN, increases, the
spacing between the frequencies f,l .1, decreases, so that in

the limit the data points on the lattice extend across the entire
plane and the frequency values fill a unit cell of the recipro-
cal lattice. The finite sum in the FFT [Eq. (27)] approximates
(with a factor of |A|) the infinite sum in the DFT [Eq. (21)],
and for the inverse transform the sum in Eq. (28) (with the
introduction of a factor of |A||K|=1) becomes

(ny.n)=_ 2 ﬁ_(w (11.15))
8FrT\N],1) f[lJ:E.%ANlANZ 8FFT\L 1502

Xesz’vlz'r"l-”z, (32)

which approximates the integral used in the inversion of the
discrete space Fourier transform, Eq. (24). To illustrate this
concept, Fig. 1(e) shows a small rectangular lattice (corre-
sponding to N;=—1, N/ =2). The circles in Fig. 1(f) repre-
sent the corresponding frequency vectors for use with the
finite Fourier transform. The box shows the region which
would correspond to a unit cell of the reciprocal lattice if the
lattice in Fig. 1(e) were extended to an infinite lattice. If the
finite lattice shown in Fig. 1(e) were extended (but still fi-
nite), the corresponding frequency vectors of the finite Fou-
rier transform would fill the unit cell more and more densely.

It should be noted that if AN, or AN, are even, then some
of the frequencies at which the finite Fourier transform is
defined [shown as the circles in Fig. 1(f)] would lie on the
boundary of the unit cell, and such frequencies would have
aliases which also lie on the boundary. For example, in the
square lattice considered in Fig. 1(f), if one of the frequen-
cies at which the finite Fourier transform is defined fell on
the edge of the unit cell, an alias of that frequency would lie
on the opposite edge, and a frequency on any corner would
be aliased with all of the other corners. In certain sums over
frequency components, such as Eq. (28), it is useful to adopt
the convention that such sums include exactly one represen-
tative from each class of aliased frequencies, so that frequen-
cies falling on the boundary of the unit cell are not counted
multiple times. If one uses the ‘‘quotient space’” point of
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view, this follows automatically as the aliases correspond to
a single point in the quotient space. Alternatively, one might
weigh each frequency by a factor (1/2 for frequencies lying
on edges and 1/4 for corners) so that each class of aliased
frequencies has a total weight of 1 (similar to counting frac-
tional atoms when reckoning the number of atoms in a unit
cell of a crystal).

The results pertaining to Fourier transformations and dual
lattices which are reviewed in this section have direct gener-
alizations to any number of dimensions, but as the statement
of the results for arbitrary finite dimension would be nota-
tionally cumbersome, only the two-dimensional results have
been explicitly stated. For notational convenience, let m rep-
resent the ordered pair m,,m,, so that g(m)=g(m,m,)
and T'm=Tn, m, and similarly for k, e.g., fk=fkI ey

IV. TRANSFER FUNCTION

The analog of the optical transfer function, which relates
the response of the detector to the input signal in frequency
space, can now be defined. The input signal (/) is a continu-
ous function of the plane. As (I) is defined relative to the
“‘flat-field,”” it is reasonable to assume that (I) has compact
support, or at least vanishes sufficiently quickly at infinity to
leave the quantities considered here well defined. Thus the
Fourier transform (i) is a continuous function of the entire
frequency plane. The data D(r,,) are well-defined only at the
discrete lattice points r,,, so that the discrete space Fourier
transform (D(f)) is determined by its values in one unit cell
of the reciprocal lattice. Values of (D) outside of the first
unit cell are determined by the periodicity relative to the
reciprocal lattice and contain no new information. For spatial
frequencies inside the first unit cell, the detector responds at
the same frequency as the input signal. For frequencies out-
side of the first unit cell, the detector responds at an aliased
frequency, so it is impossible to uniquely determine the input
signal without additional information, although it will be ar-
gued in later sections that for reasonable tasks this is not a
significant problem.

Each point on the detector grid is assumed to respond
linearly to the incident signal, so that the analog of Eq. (1) is

<D(rm)>=rf f d*r' P(rp, v’ Y(I(r')), (33)

where P, the analog of the point spread function, represents
the response of the detector at r, to x-ray light incident at r’,
and I is a constant for converting x-ray intensity into digital
values, generally chosen so that the integral of P with respect
to r’ is unity. With a discrete detector, one no longer has full
translational invariance, but there remains an invariance un-
der translations which take lattice points to lattice points,
assuming that each pixel is identical except for position.
Thus we can write

P(rp,r')=P(r,—r’), (34)

to indicate that the response of a detector element to an input
signal depends upon the displacement of the detector ele-
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ment from the region to which the signal is applied, but not
upon the absolute position of the detector element or the
signal, from which it follows'®!? that

(D(rm))=l"f fdzr'P(rm—r’)(I(r’)) (35)

for each position r,, of the sensitive elements on the lattice.
While the data D(r,,) are only available at the lattice points,
the convolution can be calculated at any point, so that

P(r)=T f f d*r' P(r—r'){I(x")), (36)
G =T PENI(D), (37)

serves as a definition of Z(r) for any position r. Although
9r) is equal to the data (D(r,,)) at the lattice points where
r=r,,, at other points Z(r) is an interpolation which will not
in general represent a physical quantity, although it is some-
times useful to think of Z/r) as the response of a virtual
sensitive element added to the detector at position r in such
a manner as to not perturb or be perturbed by the other ele-
ments. The discrete space Fourier transform on (D(r,,)) can
now be calculated using (D(r,,,))=Zr,,) for g(r,) in Eq.
(21), giving

(D(E))=|A|> e 2 19x,,)
=41 f f a2 St )2 mim (T 0
m K

=; @(f+fk)=r; T(E+E)I(E+£)),  (38)
Kk k

which follows from expressing &/ in terms of its Fourier
transform and using the completeness relationship expressed
in Eq. (25).

Comparison of Eq. (38) with its screen-film analog,
Eq. (2), helps to clarify the interpretation of the OTF, T(f).
The spacings in the discrete lattice introduce new length
scales which occur explicitly in the summation over aliases.
In the limit of a very finely grained lattice, so that |A[—0,
the spacing of the reciprocal lattice points gets larger, until
only the one unaliased term contributes significantly to Eq.
(38), and the screen-film case is recovered.

When frequencies higher than those supported by the lat-
tice are present in the signal, the summation in Eq. (38)
introduces ‘‘aliasing,” that is, there exist multiple spatial
input frequencies whose output is at the same frequency and
are thus not distinguishable. For example, considering a one-
dimensional lattice with pixel-pitch of 1 cm, oscillations at a
rate of 0.5 cycles per cm can not be distinguished from os-
cillations at a rate of 1.5 cycles per cm. From Eq. (38), two
components of the input signal generate the same component
of the output signal if and only if their spatial frequencies
differ by an element f; of the reciprocal lattice.

More generally for any lattice there are frequencies f,
such that —f, is an alias of f, (for example, if f and —f are
on opposite boundaries of the first unit cell in the reciprocal
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lattice). For such a frequency f, [noting that T(f)=T"*(—f)
and (I(f))=(I*(—f)) for real-valued P(r) and (I(r))] it is
possible to choose the phase of (I(£,)) so that

T(£,XI(E,)) +T(— £, (K~ 1£,))=0, (39)
showing by Eq. (38) that a sinusoidal signal concentrated
at frequency f, and displaced by an appropriate offset rela-
tive to the lattice (as determined by the phase of (I(f,)))
would be indistinguishable from the flat-field signal. Return-
ing to the simple one-dimensional model of pixels spaced at
1 cm, this result means that for some displacement relative
to the lattice the input of a sinusoidal wave of frequency
1 cycle/cm would give vanishing output. If the detector ele-
ments were assumed to integrate over 1 cm intervals, then
the output vanishes for all relative phases of the sinusoidal
input wave and the lattice. If, alternatively, the detectors
integrated over only 0.5 cm regions but still were spaced at
1.0 cm intervals, then the sinusoidal wave would have van-
ishing output only when the nodes of the sinusoid fell upon
the centers of the 0.5 cm sensitive regions of the detectors
and would otherwise change each digital value by a phase-
dependent offset from the flat-field value.

The optical transfer function has been written in terms of
a Fourier transform using complex exponentials. Since
complex-valued exponential inputs are not readily available,
it is necessary to ask how 7T can be experimentally measured.
In principle, phantoms machined to produce sinusoidal pat-
terns of x-ray intensity could be used, and by repeated mea-
surements with different offsets one could separate the posi-
tive and negative frequency components. A more practical
method is the well-known slanted edge technique,”®?! in
which images are acquired under flat-field conditions except
that one half-plane of the detector is shielded so as not to
receive any input signal. The detector response D as a func-
tion of distance from the edge is referred to as the edge-
spread function ESF, which can be differentiated® to give
the line spread function, LSF. Alternatively, by providing an
appropriate input the LSF can be acquired directly.”® The
LSF represents integrals through the PSF along lines parallel
to the edge, so that by acquiring data with the edge at mul-
tiple angles one obtains the radon transform of the PSF. One
can reconstruct the PSF, but it is more common to stop after
computing the Fourier transform of the ESF, which gives
values of the OTF for spatial frequencies f which are normal
to the edge. For discrete-array detectors it is desirable that
the slope of the edge is not commensurate with the lattice
spacing (for example, on a square grid, if the edge is not
parallel to one of the axes and does not have a slope which is
a ratio of small whole numbers like 1/2 or 2/3). When this
condition is satisfied, for a given region of interest the dis-
tances z of the lattice points r,, from the edge will be distrib-
uted sufficiently densely and evenly so that the ESF is said to
be ‘‘super-sampled,”” i.e., sampled at a rate significantly
higher than the reciprocal of the lattice spacing, so that it is
possible to measure values of the OTF for input frequencies
beyond those supported by the lattice.

For discrete-array detectors, rotational symmetry will
generally be only approximately valid at low spatial frequen-
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cies, so it is desirable to make measurements at multiple
angles relative to the lattice. When the ESF, at a given angle
6@ is acquired, it is often the case that the precise position of
the edge relative to the lattice is not known, so that one
actually acquires data for ESFy(z+2z,), where 2, represents
the lack of knowledge of the exact position of the edge.
Upon taking the Fourier transform of the ESF, this intro-
duces a phase uncertainty of the form e2™ 126 into the value
of T'(f). While this phase uncertainty also occurs in measure-
ments of screen-film systems, for discrete-array systems
summations over aliased frequencies generally are not pos-
sible given uncertainties in the relative phases of values of T
at different spatial frequencies. In general one can remove
this phase uncertainty by redefining the lattice positions to
correspond to the ‘‘centers-of-mass’ of the response func-
tions of the sensitive elements. More specifically, if

f j d’rP(r)= f dz ESFy(z+24)>0, (40)

then it is possible to redefine the lattice (by a shift) so that
each lattice point sits at the center of mass of the response
function of the associated detector element, giving

jj dxdy xP(r)=f fdxdy yP(r)=0. 1)

With this redefinition of the lattice position, each LSF ac-
quired corresponds to a radon projection of the PSF (onto a
line perpendicular to the edge) and thus the center of mass of
each LSF should be at the origin. This corresponds to shift-
ing the acquired LSF (adjusting z,4) so that

f dz ESFy(z)z=0 (42)

for each angle.

As a practical matter this results in an increase in the
amount of data it is desirable to report for a given detector. If
one can assume an inversion symmetry, i.e., P(r)=P(—r),
then the imaginary part of the transfer function will vanish
identically, so that only the real part need be reported. The
absolute value of the OTF, traditionally called the modu-
lation transfer function (MTF), gives enough information
to calculate quantities such as the spatial average of SNR>
(Sec. VI), but does not give enough information to explore
other aspects of the detector, such as the spatial variation of
SNR? as the test object is moved relative to the lattice. Re-
searchers should also note that with the slanted edge tech-
nique, when combining raster lines to plot the edge spread
function, the independent variable of interest is the distance
from the edge, which for square lattices differs from the
distance along a raster line by a factor of the cosine of the
angle between the raster line and the normal to the edge.
This factor becomes significant when trying to measure the
transfer function at angles away from the detector axes.
Based upon the experience of the authors, one can generally
measure values of the OTF at frequencies several times the
highest frequency supported by the lattice. One is, of course,
measuring the response of the detector at low frequency
aliases to higher frequency input signals. Whether the pres-

Medical Physics, Vol. 27, No. 10, October 2000

2423

ence of these aliased signals in the output is desirable will
depend upon the task at hand. For example, it might be de-
sirable to detect a high-frequency signal even if one can't
distinguish it from a low-frequency signal, or the resulting
ambiguity might be unacceptable.

The question of what, if anything, should be identified as
either the OTF or MTF for digital systems has been ad-
dressed in several ways in the literature. For example,
Dobbins?* discusses the ‘‘pre-sampled OTF”’ (OTFPN, our
T) as measured via the LSF,? but then emphasizes the fact
that the response to an input signal with either sinusoidal or
delta-function spatial variation will change if the input signal
is shifted by a fraction of the lattice spacing. This depen-
dence, which follows from Eq. (38) when the input is ex-
panded into Fourier components, confounds attempts to de-
fine the MTF either in terms of the frequency response to a
single delta function or as the ratio of output-to-input ampli-
tude for a sinusoid. Dobbins addresses this issue by defining

OTF,(f) = ; OTF,(f+1), (43)
1

and defining EMTF(f) as the amplitude of the detector re-
sponse at frequency f to a delta-function input averaged over
all positions of the delta function. Giger and Doi®* included
such a summation of OTF over aliased frequencies in their
study of data acquisition and display for digital systems.
Both OTF; and EMTF can be computed in terms of the OTF,
but it can be seen that neither is sufficient for calculating
SNR. Metz?S approaches the problem in essentially the same
manner as discussed in this paper, and indeed Eqs. (19) and
(30) of that paper essentially give our Eq. (38), but for a
slightly more specialized case. Metz then brings up the point
that a shift by a fraction of the lattice spacing in the input
signal does not result in a simple shift in the output data, and
concludes that ‘‘the effect is accounted for mathematically,
but it prevents us from defining a unique ‘transfer function’
of the sampling process.”’

Experimentally, Sones and Barnes®’ recognized the desir-
ability of measuring the transfer function above the maxi-
mum frequency supported by the sampling lattice in their
work with a digital radiography unit. This measurement was
performed using a novel technique based upon a phantom
consisting of periodically arranged wires, the distance be-
tween the wires chosen to be incommensurate with the dis-
tance between samples acquired by the detector. Fujita, Doi,
and Giger” measured the ‘‘pre-sampling analog MTF”’
above the maximum frequency supported by their sampling
lattice via a slanted slit technique and recognized that
‘‘knowledge of the pre-sampling analog MTF ... will be use-
ful in the determination of signal-to-noise ratio (SNR) [and]
the evaluation of digital systems,’” a statement with which
we heartily agree.

Working from a complementary theoretical perspective,
Barrett ef al.' uses the “‘cross-talk™ matrix to address the
more general case of any detector whose response is linear,
then proceeds to more specialized cases. In Barrett ef al., the
input to the system is defined as the object being imaged
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parameterized in terms of the coefficients of its three-
dimensional Fourier series, while for our purposes the input
is the x-ray fluence incident on the detector. For projection
radiography, which is our primary interest, the incident x-ray
fluence is directly related to the integrated attenuation coef-
ficient of the object along rays diverging from the x-ray fo-
cus, at least to a first approximation. As our goal is to at-
tempt to quantify the detector response independently of
other technical factors, this approximation is adequate. Bar-
rett ef al. is concerned with detectors which may have rela-
tively few sensitive elements, so the application of Fourier
techniques to the acquired data is not considered. Barrett
et al. applies the cross-talk matrix to the case of a one-
dimensional array of detector elements with aperture size
equal to the element spacing, and finds that the cross-talk
between components of the input at separate frequencies de-
creases as the length of the array is increased, so long as the
frequencies are not aliases of each other. Thus in the limit of
a homogeneous detector of infinite extent one recovers the
fact that the transfer function behaves as a sparse matrix, in
which all terms vanish except those on the diagonal or relat-
ing aliased frequencies.

In order to use Eq. (38) to calculate the response of the
detector to a given input, it would be necessary to know the
position of the object being imaged with a precision finer
than the lattice spacing. Strictly speaking, to calculate the
response in either the discrete or continuous case requires
that the input be *‘perfectly known.”” However, in the case of
a continuous detector, a shift in position of the input will
result in a corresponding shift in position of the output, while
for a discrete detector the ‘‘shape’” of the output would
change. In many cases, such as predicting the detectability of
randomly placed objects, one would need to calculate for an
ensemble of objects displaced with random phases relative to
the lattice, as will be illustrated below in calculating the SNR
of small objects.

V. NOISE

Individual realizations of an imaging process have an ir-
reducible variability which sets a fundamental limit on how
effectively the detector can distinguish between various in-
puts. For discrete-array systems, as for screen-film systems,
the noise can be quantified in terms of the autocovariance
function. If the noise is additive and Gaussian, then the au-
tocovariance matrix completely summarizes the stochastic
process which generates the noise. If the system is also sta-
tionary, then Fourier techniques can be used to define the
Wiener spectrum.

The discrete autocovariance function is given by

C(XTy) =(D(rpm) D(ry)),

where r,, and r, are points in the lattice of detectors, the
angled brackets represent averaging over an ensemble of flat-
field images, and as discussed above (D(ry))=0 in the ab-
sence of a signal. Symmetry under interchange of positions

13,15

(44)
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is an immediate result. With the assumption of stationarity,
the autocovariance depends only upon the displacement
rp—Tn SO WE can write

C(rmv l.n) = C(rm—' l‘“) (46)

without ambiguity. Note that the difference between two
vectors corresponding to lattice points is again a vector cor-
responding to a lattice point, so C on the right-hand side of
Eq. (46) is defined at precisely the lattice points.

The Wiener spectrum W(f) is defined as the discrete
space Fourier transform [Eq. (21)] of the autocovariance
function C(r,). As with any discrete space Fourier trans-
form, the Wiener spectrum is periodic in frequency space
[Eq. (22)] so that one need only consider the values of w(f)
on a single unit cell of the reciprocal lattice. It is noteworthy
that both the autocovariance C and the Wiener spectrum W
are real-valued and even. As with screen-film systems, one
considers statistics which are linear functions of the data, so
if g(m, ,m,) is a set of real (or complex) numbers defined on
the lattice points, one defines

6,=1A12 g(m)D(ry)- @7)
The variance of 6, (for g complex valued, the sum of the
variances of the real and complex parts) is given by

Var(8,)=(0,065) (48)
=|A|2<(§ g(m)D(r..,))(g g*(n)D(rn>)>

(49)

(50)

=[P X g(m)Clra—rm)g*(m)

in terms of real space. Expressing the autocovariance matrix
as the inverse discrete space Fourier transform [Eq. (24)] of
the Wiener spectrum one obtains

Var(eg)=|A|2§m) 2 g(m)f dezf

X W(f)e? ™t (= wg *(n) (51)

=f dezfé(f)é*(f) w(f), (52)
where the second step follows from the definition of the dis-
crete space Fourier transform [Eq. (21)}.

Thus one can calculate the variance of a statistic 6,,
which depends in a linear manner upon the data, using either
the autocovariance function or the Wiener spectrum. Statis-
tics of this form, for g(m) real-valued, will be seen to cor-
respond to decision variables of ideal observers in Sec. VL
As in the screen-film case, it is useful to consider functions
g(m) corresponding to the product of a plane wave and a

windowing function, which can be written as
gr (m)=G(m)e> ™% m, (53)

where G(m) is a real-valued window function with normal-
ization

x
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|A|Y, G(m)G*(m)=1, fdeZf(”;(f)é*(f)=1, (54)

where the two normalizations are equivalent by Parseval’s
theorem. Applying Eq. (49) and Eq. (52),

—ZWifo-rmD(rm)

2
> (55)

Var( 0g)=|A|2<

- [ | enéa-rypwon. (56)

For suitable windowing functions G, Ié( f—f£,)|> will be
strongly peaked near f, so that one obtains an estimate of the
Wiener spectrum at the specified frequency, W(f,). In par-
ticular, if G, (m) is chosen as 1/(MM,|A|)"? at the lattice

points me[0,...M | — 1]X[0,....M,—1], then
M—1 My—1 1
Oroer= —————=D(ry)e’ " m, (57)
rect mZO méo \lMlelAl ( "

|A]  sin® (M, 7 (f—1£,)-v,)
MM, sin’(w(f—£,)-v,)

G(E-£,)1=

sin?(Mym(f—£,) - v,)
sin®(mr(f—1£,)-v,)

, (58)

which explicitly shows that for this choice of G,
|G(f—1,)|* is strongly peaked near f,. For a square lattice
with conventional choice of basis vectors, (f—f,)-v,=(f,
—(f,))Ax, where f.—(f,), is the difference in the x com-
ponents of the frequencies and Ax is the lattice spacing
in the x direction, and similarly for the y axis. In general,
if a separable wmdow is chosen so that G(m)
=G (m)G,(m,), then G(f) Gl(f Vl)G')(f v,), so that
one can make use of the variety of one-dimensional windows
which have been studied.?

Returning to the case of a general lattice, Eq. (58) shows
that for this particular choice of window, as is typical, the
estimate of W(f) becomes sharper as the spatial width of the
window increases, so that

WH=CH= lim (Wy (D), (59)
Ml M.,—-w
|A| M—1 M>—1
= —2mif-ry,
Wi (D= 317 | 2, ,2, Plrmle . (60)

where, by stationarity, any M ;X M, region of the detector
lattice will serve. Specializing to the zero frequency case,
f=0, one gets

W(0)= lim (M;M,|A])

M .M,._.oc

M =1 M;—1
<( 7 M,,,E ) D(r..») > (61)

11 =0 msy=0

which is the discrete-array version of Selwyn granularity’
(the variance in the average digital value corresponds to the
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variance in the spatially averaged optical density of film).
Comparing Eq. (61) to Eq. (52), one can interpret Eq. (61) as
the statement that the integrated response over large regions
of the detector depends only upon the low-frequency com-
ponents of the Wiener spectrum. Viewed spatially, this result
means that the digital values averaged over sufficiently large
disjoint regions are approximately independent, so that the
variance of the average over N large subregions scales with
I/IN<1/MM,.

As with the OTF, the results of the screen-film theory
appear as a limiting case for sufficiently fine lattices. Writing
Egs. (59) and (60) as

w(f —_—
0= o 3,01 a]
M= My—1 2
< 2 2 |AID(ry)e 2w > (62)
=0 m,=0
the summations become approximations of the integrals in
Eq. (6).

The discrete autocovariance [Eq. (44)], the definition of
the Wiener spectrum as the discrete space Fourier transform
of the autocovariance, and the use of Fourier components of
flat-field images to estimate the NPS [Eq. (59)] have oc-
curred in several places in the medical physics literature, >
but historically these results seem to have been considered
less than satisfactory from a theoretical point of view. For
example, Cunningham®' stated that while *[i]t is tempting to
write out the NPS of [the sampled digital signal], but strictly
speaking this violates the shift-invariance assumption since
[the data] is sampled and is therefore not shift invariant.”
More recently, Cunningham,’” in analyzing the concept of
NPS in terms of cyclostationaryls"33 random processes, de-
fines Wy u, [Eq. (60)] as “*a working definition of the digi-
tal NPS.”” As detailed in Sec. VI, the NPS, as defined here, is
precisely the noise which sets the detection-theoretic limits
on the use of the detector. In the detection-theoretic approach
of Barrett ef al.,! the Fisher information matrix relates the
detector noise back into uncertainties in the estimates of the
Fourier coefficients of the object being imaged. This has the
advantage that it removes the fundamentally arbitrary choice
of scale in using digital values, but if aliased frequencies
become important the Fisher information matrix becomes
singular so that the inversion of this matrix is problematic.

The definition of NPS given here is intended to be opera-
tional in the sense that it is defined in a manner which can
be implemented using the experimentally available digital
values. For the purposes of understanding the sources of
noise in detectors, it may be useful to consider the noise
in the “‘presampled’” signal, and for some detectors this pre-
sampled signal might be experimentally accessible. For ex-
ample, in a detector based on a phosphor screen coupled with
a lens to a charge-coupled device (CCD) camera, one could
do experiments in which the camera is replaced by a photo-
graphic film. For some devices, such as TFT arrays using
direct conversion mechanisms, the meaning of the presa-
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mpled signal is less clear as removal or refinement of the
sampling array is likely to change the electric fields respon-
sible for charge collection.

As reviewed by Wagner and Sandrik,° the calculation of
the NPS can be implemented in several ways. One method is
to estimate the autocovariance function [Egs. (44) and (46)]
using pairs of points in one or (preferably) more images, and
then performing the Fourier transform to give the NPS. Al-
ternatively, the variance in the Fourier components is used,
as in Eq. (55). If G is chosen as a rectangular window, then
Eq. (55) reduces to Eq. (59), so that (W, u, (D) [Eq. (60)]is
used as an estimate of W(f). In principle the frequency fis a
continuous variable, but the spread of |G($)|? limits the reso-
lution in frequency space [by Eq. (56)] and this spread is
inversely proportional to the size of the spatial region and on
the order of |K|/M M. Given this resolution, it is reason-
able to calculate the NPS at M M, frequencies spaced
evenly in the unit cell K in frequency space. Thus, the tech-
niques commonly in use by experimenters give precisely the
quantities of interest from our current theoretical point of
view, although the use of windows other than the rectangular
window might be of interest to obtain better frequency reso-
lution.

Generally, frequency resolution is not a limiting factor in
estimating the Wiener spectrum, and the NPS estimated by
{ W, (D) is subjected to further smoothing. From Eq. (57)
it is seen that (W), Mz(i},)} is the variance in the random

variable 6, and as the region of interest used in the cal-
culation is made larger, the variance in 6, tends to W(f)
which will be nonzero in general. Because the variance of
8, does not vanish, neither will the variance in | Orecd 5 5O
the variance in Wy ,(f) does not converge to zero as
M, ,M,—c. As the region of interest is made larger, one
gains in spectral resolution but not precision, and this repre-
sents an unavoidable trade-off.**** One can only decrease
the uncertainty in the estimates of the Wiener spectra by
averaging estimates of W(f) from several different regions of
interest. Of course, for the purposes of analysis one could
divide a large region into several smaller regions, and the
averaged value of estimates of W(f) would then have less
uncertainty, but the spectral blur would be increased. Since it
is often inconvenient to obtain sufficiently many flat-field
images to make the standard error in the estimates of W(f) at
individual frequencies small, researchers often opt for
smoothing the experimental spectrum.

V1. KNOWN SIGNAL DETECTION

Having addressed the issues of OTF and Wiener spec-
trum, it is now possible to use the signal-to-noise ratio (SNR)
to quantify the ability of the detector to perform SKE/BKE
tasks. First, however, it is useful to briefly review the mean-
ing of the SNR in terms of an ideal®* observer working with
Gaussian statistics. The ideal observer is challenged with de-
ciding between two hypotheses based upon a given set of
data. In the current context, these data consist of the digital
values obtained from the detector, and for the moment

we will restrict the observer to knowledge of only a finite
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region of the detector, corresponding to indexes me b
=[M,,....M|—1]1X[M;,...,M,—1]. This observer works
under the assumption that given hypothesis Hy, correspond-
ing to an expected input signal (/(r)); and an expected data
set (D(ry));, the probability density function describing the
expected range and frequency of observed data sets is Gauss-
jan. This Gaussian distribution in (M| —M)X(M,—M>)
=AM,AM, dimensions, one dimension for each detector
element available to the observer, can be written explicitly,
but to make the formulas somewhat less cumbersome we
use the following notation: X =D (1), (Xm1={(D(rm)1,
(Xedu=(D(rm))y, and {Xp}={D(rn)|me.Z} is a
AM AM,-dimensional vector in the space of all possible
data values for the detector elements in region .. The prob-
ability distribution which governs the frequency with which
particular data sets will be obtained under hypothesis Hj is
given by

PI( {Xm}) = Noe - llzzm,ne,%é(xm_ <Xm>1)(c— l)mn(Xn_ (Xn>l) ,

(63)
where the normalization factor is given by
1 \(AMAM2
e )L "

The matrix Cpy is the autocovariance function C(Fm,Tn) of
Sec. V restricted to the range m,ne.75. The fact that m and
n are double indices, e.g., m stands for mj,m,, is not a
problem from the theoretical point of view, and in principle
for a numerical calculation one could simply choose a con-
venient one-to-one pairing of the double indices my,m;
e ./ with the integers L,...,AM;AM, so that C would be
indexed in a more customary manner. Under hypothesis Hy,
the range and frequency of observed data sets will be gov-
erned by a Gaussian probability density Py, this time con-
centrated around (X)H. The restricted covariance matrix, C,
occurring in both cases, will be the same under the assump-
tion that the noise is additive.

Returning to the question of how to decide between hy-
pothesis Hy and hypothesis Hy, if for a given instance of the
experiment a data set {X,}={D(ry)|me.#} is obtained
such that Pp({X,}) is relatively large and Pi({Xp}) is rela-
tively small, it would generally be reasonable to favor Hy.
Thus the ideal observer’s decision rule based on the likeli-
hood ratio P/ Py, as discussed below, is intuitively reason-
able.

The ideal observer attempts to minimize the expected
cost®3® given knowledge of the cost of misclassification un-
der either hypothesis and the a priori probabilities associated
with each hypothesis,

(Cost) = P(Hy) P(ChIIT) Cy_y+ P(Hy) P(ChIT) Cy_y,
(65)

where in the first term P(Hy) is the a priori probability of the
state corresponding to hypothesis Hy being true, P(ChII|D) is
the probability of mistakenly choosing hypothesis Hy when
hypothesis Hy is correct, Cy_ is the cost associated with this
error, and similarly for the second term. Given a region Ry

*
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ty -

of the AM;AM, dimensional data space and the decision
rule that, if the observed data {D(r,)|me.#} are in Ry
then the observer rules in favor of hypothesis Hy and other-
wise in favor of Hjp, then the probability of mistakenly fa-
voring hypothesis Hy when H is correct is

P(ChIIl) = f f jR d*MAMAX AP ({X W), (66)

and, as under either hypothesis the total probability must be
unity,

P(ChIl)=1- f f f dAMIAMAY APL({Xm)) (67)
Ry
gives the probability of making the error in the other direc-
tion. Combining Egs. (65)—(67),
<COSt> = P(H]])CH—*I

+ f f fR AN ADCHX,D),  (69)

where
DC({X}) = P(H) Cy_gP({Xm})
—P(Hy) Cy—Pru{Xm}) (69)

is the differential cost which, if the experiment were repeated
sufficiently often, would be attributed to those experiments
which gave data {D(r,,)|me.Z}. Clearly the expected cost
given by Eq. (68) is minimized by choosing the region Ry to
be precisely the region where the differential cost DC is
negative, so that the ideal observer’s decision rule is to
choose hypothesis Hy if and only if the likelihood ratio

3 Py({D(rp)lme./2})

A= 70
P({D(ry)me. /7)) (70)
exceeds the threshold value
P(H))Cy_.
_P(H)Cp_g o

° P(Hp)Cy_y

By adjusting the operating point A, one makes trade-offs in
the rates of the two possible error types, as can be shown
graphically in terms of receiver operator curves (ROC
analysis).”’ Equivalently one can place the cutoff on log A,
and from Eq. (63),

logA= 2 (D(ry))n—(D(rm))(C™HpD(ry)

mne./Z

+ const, (72)

where the constant term does not depend upon the observed
data. Thus an ideal observer, viewing a finite region . /2 of
the detector array, uses a linear statistic 6 ,; defined by

0.,= Z/g.M(rm)D(rm), (73)

me./”

where g , is given implicitly by
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2 ” g..//;'(rm)c(rm’rn) = (<D(rn)>H_ <D(rn)>l)’ (74)

me./Z

for all ne./. On physical grounds, the values of the mask
function g_,,(r,,) will be significant only in the region near
where (I(r))y—(I(r)); is nonzero. Further from this region,
the values of g_y(r,,) will tend to zero, so that for suffi-
ciently large AM AM, the ability of the detector to dis-
criminate between the two hypotheses should not depend
upon the exact value of AM AM,. In that limit, the efficacy
of the detector for the SKE/BKE task should be set by the
linear statistic ¢, for the ideal observer’s mask function g;.
This mask function is defined implicitly by

'A |m§/1§ gZ(rm)C(rmvrn) = (<D(rn)>II_ (D(l‘n)>[), (75)

where a factor of |A| is introduced to simplify the form of
the solution which in the Fourier domain is given by

_ (DM)u—(D®);

WD) (76)

&)

S, (T80 ya— (T (E+ 6D T(E+£)

=T T . 77

The statistic 0, is itself a Gaussian variable whose variance

can be computed using Eq. (52), so that

|2 (AI(£+£))T(£+ 8]
W(f)

SNR2=T2 f da* (78)
K

gives the SNR corresponding to the use of the statistic, as
defined in Eq. (8). Thus the limiting case of a detector array
of infinite extent is well defined, for pixels ‘“far away’” from
the region of interest do not significantly contribute to the
decision. Physically, it is clear that the ‘‘tails’” of the PSF
and autocovariance functions set the relevant scale by which
distance from the edge of the array is measured, so that when
the projected images of objects appear at a distance from the
boundary of several times the lengths of these tails the de-
tector can be treated as essentially infinite and Eq. (78) is
valid.

It is acknowledged that there are mathematical subtleties
related to a truly infinite detector which are not addressed
here. For example,® the data set for such a detector would
represent an infinite set of random variables, so it is not
possible to write down a probability density distribution like
Eq. (63) in the infinite case. The nature of the physical limit
is sufficiently clear that a study of these mathematical subtle-
ties could not change the results. In any case, the fact that the
linear statistic 6, with g=g7 gives the optimal SNR of any
linear statistic can be proven directly. More precisely, if
g(ry) is used to define a linear statistic 6,, then letting
AD=(D)y—(D)r,
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2

[ [ esa0 W)

y ( Aﬁ(f)) ?
JW(E)

' Sf dezﬂg(f)le(ﬂ

|AD()|?
2
X f de f———W(f) , (79)

‘ ] deng(f)Aé(ﬂ

where the second step is an application of the Schwarz in-
equality. Dividing both sides of Eq. (79) by the first factor on
the right, one obtains

| J xd*fg(HAD(D? |AD(f)]?
[T xd*tlg (O WD) sJ Ldzf_"—’ (80)

w(f)
where the quantity on the left is the SNR? for the statistic o,
[Eqgs. (8) and (52)] and the quantity on the right, proven to be
larger, is the SNR? of the ideal observer as given by Eq. (78)
[with Eq. (38)].

As a slightly less subtle point, the construction of the
ideal observer involves dividing by W(f), which is problem-
atic if W(f)=0 at some frequency. For physical detectors,
the Wiener spectrum never vanishes as there is always some
residual noise. Even for highly idealized detectors, the
Wiener spectrum must reflect the noise in the incident x-ray
fluence so that it can only disappear at frequencies where the
OTF vanishes, and at these frequencies the Wiener spectrum
will vanish no faster than OTF?(f) (discussed in more detail
in the next section), so that even in this case the SNR as
given by Eq. (78) is a well-defined limit.

The SNR given by Eq. (78) corresponds to the SKE/BKE
decision task using a discrete-array detector, as Eq. (13)
gives the SNR for the SKE/BKE decision task for screen-
film. Strictly, these formulas do not apply to the task of
detection when the observer does not know the position of
the object being imaged. For detecting a signal of unknown
location, one can calculate the ideal observer’s SKE/BKE
64(r) for each possible position r of the object. A common
strategy is then to apply a threshold to 67(r). Under the
assumption of Gaussian statistics with complete knowledge
except for position, the likelihood ratio computed by the
ideal observer uses 64(r) in a nonlinear manner>>=4 that is
sensitive to peaks in ,(r). In either case, the values of SNR
given by Egs. (13) and (78) are indicative of the efficacy of
the ideal observer in the more general case of the position
being unknown.

For the discrete-array detector, however, the value of the
SNR for the SKE/BKE case will depend upon exactly where
the object is relative to the lattice. While this variation can be
significant (for example detectors could have interstitial
spaces where objects completely disappear), the magnitude
of the effect decreases for objects large relative to the lattice
spacing. Examples of this for several simple model detectors
will be given in the next section. If the variation in SNR?
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with position is not too great, then the spatially averaged
value of SNR? will be of use.! This spatial average can be
computed exactly by noting that if an object is shifted by a
displacement r, the Fourier transform is multiplied by e2mrr
so that in Eq. (78) the sum over elements of the reciprocal
lattice becomes

2
; (AT(E+8))T(£+ £ )e2 ™| (81)

where a common factor independent of k(|e>™F|=1) has
been removed. In averaging over positions r in Eq. (78), the
denominator of the integrand does not depend upon r, and
the numerator is the square of the magnitude of a Fourier
series in r, so that in integrating over r to obtain the average
over all displacements one can apply Parseval’s theorem to
obtain

S | AT(E+6) 2| T+ RO
W(f)

(SNR?)=T"? f Ldzf

o o

where the second step follows from noting that the sum of
the integrals over each unit cell is equivalent to the integral
over the entire plane.

As for the OTF and NPS, the film-screen result, Eq. (13),
can be recovered from the discrete-array result [Eq. (78)] by
going to the limit of a sufficiently fine lattice, in which case
the distance to the first aliased frequency is so large that only
the unaliased term contributes to Eq. (78). Similarly, for a
sufficiently fine lattice all objects are large relative to the
lattice spacing, so that SNR? does not vary appreciably as the
object is moved relative to the lattice spacing. These facts
prompt the identification’ of

GNEQ(f) =T?|T(f)|* >/ W(f), (83)

as a generalization of the concept of noise equivalent quan-
tum flux (NEQ), where @ is the incident x-ray flux, and

GDQE(f)=T2|T(f)|>®/W(f), (84)

|7(5)|?
WD)

)lAimP, (82)

as a generalized detective quantum efficiency (DQE). These
results parallel the screen-film theory, except that factors of
fluence appear in the numerator as the response of digital
detectors is linear with fluence [Eq. (33)] while film density
is linear with respect to the log of fluence [Eq. (1)]. While
Eq. (82) is exact in the context of the assumptions we have
made about the detector, SNR? enters nonlinearly into other
quantities such as the various probabilities of misclassifica-
tion for a given operating point (sometimes called the false
positive fraction and the false negative fraction in ROC
methodology). However, when the variation in SNR? is not
too large, perhaps as measured by the rms (root-mean-square
variation in SNR?), then the GNEQ and spatially averaged
SNR2 can be considered a useful summary of the efficacy of
the detector.

In this paper we have applied the concept of an ideal
observer directly to the digital data. The results obtained are
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implicit in the work of Giger et al.,'>**? but Giger et al.

concentrates on issues of display and models of human vi-
sual response to the displayed data. As these tasks are decou-
pled from image acquisition for digital systems, it is worth
considering figures of merit for the data acquisition system
independent of the display, as done here. The results of this
section also follow as limiting cases of the work of Barrett
et al.' Of particular note, Sec. V A! discusses a simple bin-
ning detector and obtains
M =2
SNR?= >, —A—‘gﬂ, (85)
m=1 Oy

where o, is the uncorrelated noise in the mth detector and
Ag,, is the expected change in the data value at the mth
detector which would be caused by the signal. This particular
result can be obtained directly from first principles based on
counting statistics in each detector element. In the stationary
case, 0,,= 0 is a constant, so in Eq. (78) W(f)=0>|A| and
the numerator [using Eq. (38) and Parseval’s identity] be-
comes |A|Z|A(D(ry))|?, again recovering the result [Eq.
(85)] based on counting statistics for uncorrelated noise. It is
worth noting that if one does not include the aliased terms in
the numerator of Eq. (78) (perhaps on the grounds that
aliased signals are not useful), the value of SNR? will be
underestimated. The aliased response is part of the physical
response of the detector, and in this case the aliased terms
will add coherently in such a manner as to bring the calcu-
lated value of the SNR? up to the value in Eq. (85) obtained
from counting statistics.

Vil. MODEL DETECTORS

To give a feel for the implications of the above theory, the
capabilities of detectors with reasonably realistic parameters
will now be investigated. The modeling is somewhat simplis-
tic, but sufficient to demonstrate several interesting proper-
ties, such as the dependence of SNR on the position of the
object being imaged, and certain trade-offs inherent in such
detectors, particularly those trade-offs related to the possible
suppression of input spatial frequencies above the frequen-
cies supported by the lattice. The incident x-ray fluence ®
has a white Wiener spectrum, W;(f)=®. Among other sim-
plifications, which will be discussed in more detail at the end
of the section, we assume 100% of the x-rays interact. Each
x-ray undergoes a stochastic amplification, characterized by
an average of m secondary quanta per x-ray with o, = N
for a Poisson process, and the secondary quanta undergo a
stochastic scattering process, with a spread function P, and
transfer function T, before being ‘‘binned’” by the detector
elements. The result is an average of m® secondary quanta
per unit area on the detector with a pre-sampled Wiener
spectrum given by43

W (B =[m>W(f)+ ®cZ—m®]|T,(£)|>*+md. (86)

For a square lattice with spacing L, binning can be consid-
ered as a deterministic convolution with rect functions rep-
resenting the detector regions, so that with
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sin(rLf,) ) ( sin(wLf,) ) 87)

wLfx mLfx

the digital noise power spectrum can be written

Tb(f)=(

1
WD) =~ 3 (AP T (1+ 8+ m) | T8+ )
. k

+Wg, (88)

where the factor of 1/m? is introduced so that digital values
will correspond to x-ray count and W is the electronic
noise. With the present conventions the gray-scale character-
istic is set to I'=|A|. A simplification can be achieved*
using

d sin(r(x+n)) 2_
n=—oo( m(x+n) )_l (89)

for any x, which can be proven by applying Parseval's theo-
rem to the Fourier series for ¢>™ for y e[ —0.5,0.5]. The
experimentally observable transfer function (as obtained, for
example, by the slanted-edge technique, cf. Sec. IV) contains
the effects of stochastic scatter and binning, thus T(f)
=T (HHT,(DH), so that

P4

W(f)/|A|=<D!A|f2 |T(£+8) |2+ T+WE/|A] (90)
k

is the Wiener spectrum of the model detector, with the aver-
age number of x-rays per pixel being ®|A|. The summation
over aliases in Eq. (88) is often referred to as “‘noise alias-
ing.”” The division into aliased and unaliased components is
useful for modeling a variety of detectors, but it should be
noted that this division is generally not directly experimen-
tally accessible, at least not without modifying the detectors,
and that in principle there could be devices which are sta-
tionary, and therefore have Wiener spectra, but for which the
division of the NPS into aliased and unaliased components is
not useful.

It is useful to choose values of the parameters in the
model which are representative of detectors of current clini-
cal interest, as this can help in the understanding of the phys-
ics which determines the performance of these devices, but
detailed modeling for quantitative comparison to actual de-
vices is beyond the scope of this article. We assume a square
lattice with spacing of L=0.143 mm, operation at an expo-
sure corresponding to |A|® = 1400 x-rays per pixel, and an
amplification factor of m=1000. For the stochastic transfer
function T; we consider three possibilities: a ‘‘blur-free”
detector for which T (f)=1, typical of photoconductive
arrays,” and two ‘‘alias-free’” detectors whose stochastic
transfer functions are of the form Ts(f)=e—mI with
A=0.463 and A=0.34 mm, which approximates the transfer
function for evaporated CsI.*~4 Typically electronic noise
V(Wg)/|A| is on the order of 3-5 x-rays, so values of 0, 42,
and 87 cover the range of values for ®|A|/m+Wz/|A|.

The transfer functions for these models are shown in
Fig. 2. As the pixels are symmetric with respect to inversion
through their centers [i.e., for the PSF, P(r)=P(—r), and
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Transfer Functions

' ]
---- blur-free

—— alias—free (A = 0.463 mm)
— —- alias-free (A =0.34 mm )

OTF

P i

~0.0 5.0 10.0 15.0 20.0
Frequency (Ip/mm)

Fic. 2. The optical transfer functions of three model detectors. The ‘‘blur-
free” detector bins the secondary quanta without smoothing, while for the
“Jlias-free”" detectors the distribution of secondary quanta is smoothed by
an exponential MTF (e"‘m) before binning. Data are shown as a function of
the magnitude of the spatial frequency for several angles.

P(r) is a real number], the imaginary part of the transfer
function is identically zero, so only the real part need be
graphed. The OTF is, of course, a function of two variables,
fxand f,. To show this, we plot the OTF as a function of the
magnitude of the frequency vector for three angles relative to
an axis of the detector. For the blur-free detector, the transfer
function is simply the product of the sincs in the two direc-
tions induced by the binning operation. The OTF of the blur-
free detector is nonzero well beyond the highest frequency
supported by the lattice. Any component of an input signal at
these higher frequencies will contribute to a lower frequency
alias in the output, as per Eq. (38), and while it is not obvi-
ous from the point of view of frequency space the sum over
aliases in Eq. (38) will be precisely equivalent to the detector

Wiener Spectra
1500.0 T T T T
\
\ - - - - blur=free
\ —— alias—free{A = 0.463)
\ - — - alias-free(A = 0.34 mm)

5 1000.0 |- 1
©

2

=3

)

B

©

T

x

<

D 5000 |

z

0.0 L— L : :
0.0 1.0 20 3.0 4.0 5.0

Frequency ip/mm

Fic. 3. The Wiener spectra W(f)/|A| for the three model detectors as in Fig.
2. The residual additive white noise ®|A|/m+Wy/|A| has been set to 0.
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GDQE
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FiG. 4. GDQE as a function of frequency for the three model detectors as in
Fig. 2, with the residual white noise ®|A|/m+Wy/|A]| set to 0.

simply binning each incident x-ray. For the alias-free detec-
tors, there is very little response to frequencies beyond those
supported by the lattice. For each detector, three angles are
plotted, but the angular dependence for the alias-free detec-
tors is small enough to not be apparent on the graph.

The Wiener spectra are shown in Fig. 3. Again, instead of
plotting a function of two variables, f, and f,, we plot the
NPS as a function of the magnitude of the frequency vector
for three angles, 6=0, 27, and 45° (27° corresponds to a
slope of 1:2 relative to the lattice). However, the NPS shows
little angular dependence. For the Wiener spectram one only
needs to look at frequency values supported by the lattice,
ie., fye[~1/2L,1/2L] and f,e[—1/2L,1/2L] (for conve-
nience one can consider W to be periodic in the frequency
plane). Thus, at §=0° one only needs to graph up to 1/2L
=3.5mm™’, but at #=45° the frequencies are on the diago-
nal of the square, so one goes up to \/5/2L=4.9 mm™!. At
#=27°, one goes up to 1/(2L cos )=4 mm ™ .. For this graph
the constant offset ®|A}/m+ Wz /|A] has been set to zero.
For the blur-free detector, the NPS is flat, which follows
mathematically from Eq. (89) and the fact that 7(f) for these
detectors is simply related to sinc functions, or more physi-
cally by noting that for a detector which simply bins incident
x-rays adjacent cells will be uncorrelated so the NPS is flat.
For the alias-free detectors, the NPS is suppressed by factors
of the square of the transfer function.

The GDQE as a function of frequency are shown in
Figs. 4—6 for a range of values of the residual white noise
®|A|/m+Wg/|A|. For each graph, values are plotted as a
function of the magnitude of the spatial frequency for angles
0, 27, and 45° relative to an axis. In each case, the GDQE
falls off most quickly at #=0° and least quickly at #=45°,
which represents the fact that on the diagonal the sampling
rate is increased by a factor of v2. In the case where the
residual white noise is zero (Fig. 4), the GDQE of the blur-
free detector drops like the square of a sinc function. For the
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GDQE
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Frequency (Ip/mm)

F1G. 5. GDQE as a function of frequency for the three model detectors as in
Fig. 2, with the residual white noise ®|A|/m+ Wg/|A| set to 42

alias-free detectors, the GDQE remains at nearly unity up
to the lattice cutoff, the factor of T%(f) canceling the same
factor in the colored part of the noise. The GDQE of the
blur-free detector shows some response beyond the lattice
cutoff. Though small, this portion of the GDQE is physical
and it will be shown that the responses to the aliased
frequencies can not be trivially dismissed. With the addition
of residual white noise the GDQE of all three models is
reduced, as shown in Fig. 5 (®|A|/m+W/|A|=4%) and
Fig. 6 (®|A|/m+ Wg/|A|=82). These figures illustrate that
the alias-free detectors are more sensitive to sources of re-
sidual white noise than blur-free detectors. Indeed, in Fig. 6
the blur-free detector now has higher GDQE than the
A=0.463 mm detector even at low spatial frequencies. From
the spatial point of view this is quite reasonable. A detector

GDQE
DA/ + W,/A| = 8
1.0 T T
N
NS ---- blur-free
\ — alias—free (A = 0.463 mm)
08 | \\ — — - alias~free(A = 0.34 mm)
\
3
X!
\‘\\\
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w W
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\
04 (\‘ 4
o
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0.0 10.0 15.0
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F1G. 6. GDQE as a function of frequency for the three model detectors as in
Fig. 2, with the residual white noise ®|A|/m+ W /|A] set to 82,
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SNR? as a function of displacement

{50y wire 20 mm long parallel to axis)
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FIG. 7. Relative SNR? as a function of position for a 50 pm wide, 20 mm
long wirelike object parallel to one axis of the detector. The horizontal axis
of the graph gives the displacement of the wire, so that at 0 mm the wire is
over a single column of sensitive elements, while at 0.07 mm the wire
straddles two columns. The verticle scale is arbitrary (dependent upon the
contrast of the wire).

whose transfer function is designed to remove aliases has a
relatively wide point spread function, and therefore a rela-
tively wide autocovariance function. The ideal observer
makes use of digital values in array elements whose distance
from the position of the signal is up to several times the
lengths of the tails of these functions, so for the same input
signal the ideal observer will have to integrate over a larger
region on an alias-free detector and thus will be more sensi-
tive to any residual uncolored noise.

While GDQE is directly related to the average value of
SNR? by Eq. (82), high-frequency signals (i.e., x-ray pro-
jection images of small objects or objects whose projected
density varies quickly with position) can demonstrate signifi-
cant changes in SNR? with position. To explore this, con-
sider the SKE/BKE task associated with an object 50 um
wide and 20 mm long. Wires of this width have been used in
neurological and cardiovascular stents.*® Figure 7 shows the
SNR? for such an object, oriented parallel to an axis of the
detector, as a function of displacement in the direction of the
shorter (50 um) axis. The scale of the vertical axis is arbi-
trary as we won’t set the inherent contrast of the signal. In
Fig. 7, the 0 mm displacement corresponds to the signal
being centered over the sensitive elements of the detectors.
For the blur-free detector, at 0 mm displacement the signal
falls into a single column of detectors, so the SNR? corre-
sponds to counting statistics for one column of elements 20
mm long. The SNR? is constant until the 0.05 mm mark,
after which the signal is shared between two columns of
detectors, resulting in a drop in SNR?. Physically, the num-
ber of x-rays attenuated by the object is independent of its
position, but at a displacement of 0.7 mm the signal is shared
equally between two columns, and since the noise is as-
sumed to be uncorrelated, the variance in the total counts in
the two columns is twice that of one column, so the SNR? is
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TaBLe I. SNR? averaged over position and orientation for the projection
image of an object 0.05 by 20 mm. As the SNR? scales with the square
of the contrast of the image, only relative values are meaningful. The *
represent the rms (root-mean-square) fluctuations in the SNR? with position,
not the statistical uncertainties.

SNR? for 50 xm wide, 20 mm long object

O|A|/m+WgilA|l=0 =47 =82

Blur-free 1.81+0.02 1.79+0.02 1.73%0.02
Alias-free (\=0.463 mm) 2.16+0.16 1.87£0.07 1.48+0.02
Alias-free (A\=0.34 mm) 2.15%0.15 1.99+0.10 1.68+0.05

reduced by half. The alias-free detectors show less sensitivity
to position, as the signal is always shared between multiple
columns. As before, curves are shown for three values of the
residual white noise ®|A|/m+Wg/|A|(0%,4%, and 8). For
all models, the SNR? drops as the residual white noise in-
creases, but this effect is greater for the alias-free models.
Table I gives the average SNR? for detection of the 0.05
wide, 20 mm long wire, now averaged over both position
and orientation. Additionally, the root-mean-square variation
in SNR? is given, to indicate the degree to which the detect-
ability of the wire would vary. Again, the alias-free detectors
give a higher SNR? if the residual white noise is kept suffi-
ciently low. In calculating the SNR? of the projection of the
wire using Eq. (78), if the summation over aliases is
dropped, the resulting integral decreases by about 10%. Thus
the contributions of the aliased signal to the SNR are not
always negligible.

Somewhat speculatively one can consider tasks which de-
pend upon higher frequency components of the signal.so
Consider a 5 mm square with 10% contrast, and a second
square whose edges have been smoothed by convolving with
a 0.15 mm rect function, so that the resulting signal ‘‘ramps
up”’ over a distance of 0.3 mm. The SNR? for the SKE/BKE
task of distinguishing between these two objects is given in
Table II. It is interesting to note that, mathematically, the
SNR? is sufficiently large that the ideal observer can perform
this task efficiently, although whether a human could do this
is questionable. On the other hand, edge detection is impor-
tant both computationally and probably as part of the strat-
egy of human observers, so the ability to perform this task is
not a priori irrelevant. Again, the alias-free detectors have a
higher SNR? if the residual white noise is zero, but as the
task now depends more heavily on the higher frequency

TasLe II. SNR? averaged over position and orientation for distinguishing
between the projection of a 5 mm square with sharp boundaries and a square
whose boundaries ramp up over a 0.3 mm region. Normalization corre-
sponds to a 10% contrast with an x-ray flux corresponding to 1400 x-rays/
pixel. The = represents the rms fluctuations in the SNR? with position, not
the statistical uncertainties.

SNR? for discontinuity vs slope

DlA|/m+WgilA|=0 =47 =82
Blur-free 142 14+2 132
Alias-free (\=0.463 mm) 16+3 121 7.6%0.5
Alias-free (\=0.34 mm) 16+3 14+2  10=1
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TasLE L. SNR? averaged over position and orientation for detecting the
projection of a 0.5 mm square. Normalization is arbitrary. The =+ represents
the rms fluctuations in the SNR? with position, not the statistical uncertain-
ties.

SNR? for 0.5 mm square

DJA|/m+ W, |A|=0 =42 =82
Blur-free 1.910.01 1894001  1.83%0.01
Alias-free 2.08+0.01 1.99+0.01 1.789+0.003
(A\=0.463 mm)
Alias-free 2.07+0.01 2012001 1.855+0.006
(A=0.34 mm)

components of the signal, the alias-free detectors are more
sensitive to residual white noise, with the crossover at
®|A|/m+Wg/|A|=42. The detection of a 0.5 mm square is
shown in Table III. Here, the lower (but nonzero) frequen-
cies dominate the response of the detector, so that in general
the antialiasing detectors gain from the removal of the
aliased noise without losing any signal.

It is interesting to note that the SNRs for the tasks and
models described above do not vary greatly. Many factors
not considered here will greatly effect the performance of
real detectors, beginning with the fact that less than 100% of
the incident x-rays will produce secondary quanta. The color
of the Wiener spectrum need not be the same as the transfer
function, due to, for example, x-rays interacting at various
depths in the detector.”! The efficiency of collection of the
secondary quanta can also have significant effects.>? For Csl
detectors, of which our ‘‘alias-free’” detector is a rough
model, the fill factor is a minor effect so long as the ampli-
fication m is sufficiently largf:.48 For selenium detectors, of
which our ““blur-free’” detector is an approximation, it is
possible to have an effective fill factor significantly greater
than the geometric fill factor of the TFT ar1‘ay.53’54 In any
case, our purpose here is merely to indicate some of the
issues which must be faced in quantifying digital detectors of
these types. In addition, we did not consider geometric fac-
tors such as x-ray focal spot size and x-ray parallax48 which
reduce the high-frequency content of the incoming signals.

VIIl. DISCUSSION AND CONCLUSION

The results of this paper set up a framework for quantita-
tive measurements of digital systems in a manner analogous
to the now common analysis of screen-film systems in terms
of the gray-scale transfer characteristic, the optical transfer
function, the Wiener spectrum, and signal-to-noise ratio. The
logic of this framework is by design close to the classic work
on film-screen systems. While many pieces of this argument
have appeared in the work of others, as noted throughout the
text, it seemed desirable to produce a coherent systematic
exposition. The results can be seen as appropriate limits of
those of Barrett et al., but the theoretical construction here
emphasizes the parallels with the classic results on screen-
film systems. While detectors consisting of discrete elements
do not have continuous translational symmetry, the remain-
ing discrete symmetry allows one to use the appropriate Fou-
rier technique. The advantage of this, as in the screen-film

e ey
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case, is that one can explicitly solve for the mask function of
the ideal observer [see Eq. (75)] and thereby obtain the op-
timal SNR. As for screen-film, this formula can be inter-
preted as the ratio of the square of the signal in each fre-
quency bin to the noise in each frequency bin, as measured
by the Wiener spectrum, integrated over bins.

We have investigated several highly idealized, but not
completely unrealistic, models of detectors, and illustrated
some of the issues inherent in various design decisions. This
analysis is incomplete and intended to point toward issues
which could be addressed in other work. However, our re-
sults suggest that for typical tasks the detectability of objects
as determined by SNR? is not drastically affected by the
decision, in and of itself, to suppress or not to suppress
aliases. In any real device, of course, this design decision is
linked to many other parameters. This article should be of
use in clarifying what is actually experimentally measured in
testing such devices.

The results presented here are exact for the SKE/BKE
task as approached by the ideal observer under the assump-
tions of linearity, homogeneity, and stationarity. However,
each of these assumptions is only approximately true in prac-
tice. The finite extent of real detectors trivially shows that
they are not homogeneous, but for a variety of tasks edge
effects are negligible. More importantly, many digital detec-
tors in practice show significant inhomogeneity and nonsta-
tionarity. The work of Barrett et al. is sufficiently general to
cover these cases. Further, the inhomogeneity and nonsta-
tionarity of a given instrument often occur in ways which are
different for each individual device, so that while the extra
information is relevant to the particular device one has mea-
sured, the extra information is often not generalizable to
other devices of the same manufacture. This extra informa-
tion is useful for optimizing certain tasks using the particular
device, but of less use in understanding a class of devices.
Additionally, while the signal detection task of the ideal ob-
server under SKE/BKE conditions certainly shares some fea-
tures with the task which human observers face, and has
under many conditions been shown to correlate well with the
ability of human observers (for example, screen-film images
of nylon beadsss), it is still a very idealized task. For ex-
ample, if edge-detection is important, then higher frequency
parts of the incoming signal become more important than
would be expected given simply the signal detection task.
From the point of view of a radiologist, a clear edge might be
used to identify and distinguish the existence of a lesion
from a variation in projected density of the underlying organ,
particularly in the presence of the ‘‘structured noise’” of
other anatomical features.

Clearly these are issues for further study, but while OTF,
W, SNR, and GDQE are certainly useful because they are
objectively measurable and in a mathematically precise man-
ner are related to tasks which approximate those of the hu-
man observer, it is worth remembering that measurement of
these quantities does not obviate the need for observer stud-
ies, particularly with practicing radiologists.
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